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1. Introduction

Theory of solitons in optical fibers is a very rich
area of research in the field of nonlinear optics. Optical
soliton molecules are pulses that act as information
carriers through optical fibers for trans-continental and
trans-oceanic distances. We observe profound progress
in the field of nonlinear optics [1-25]. For example,
solitons in photonic crystal fibers, diffraction Bragg
gratings, dispersion-managed solitons and quasi-linear
pulses are a few of the latest advances. There exist still
ongoing research activities in optical bullets, spatial
solitons and spatio-temporal solitons.

In this work, the nonlinear Schrédinger’s equation
(NLSE) which includes perturbation terms of certain
types is examined. We investigate nine forms of
nonlinear media and they are Kerr-law, power-law,
quadratic-cubic law, parabolic-law, dual-power law, log-
law, anti-cubic law, cubic-quintic-septic law and triple-
power law nonlinearity. In order to integrate the
perturbed NLSE for each type of nonlinearity, the trial
equation method is employed.

The dimensionless form of the nonlinear
Schradinger equation (NLSE) is given by ([12])

g +ag, +bF([a)a=0 @

where X represents the non-dimensional distance along the
fiber while, T represents time in dimensionless form and a

and b are real valued constants. The dependent variable
g(x,t) is a complex valued function that represents the

wave profile. The first term in this equation is temporal
evolution, while the coefficient of @ is the group velocity

dispersion (GVD). The coefficient of b the source of
nonlinearity. Solitos are the outcome of a delicate balance

between GVD and nonlinearity. The function F ( |q|2 ) q

is a real-valued algebraic function and is K times

continuously differentiable, so that

F (|q|2 ) qe m;}lek((—n,n)x (-m,m); R?).

In presence of perturbation terms, NLSE is modified to

([21.[7].[28],[19])

6, +ag,,+bF (o)

_ i[aqx +z(|q|2”‘ q)x +V(|q|2m)x q}

O]
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where « is the inter-modal dispersion, A represents
the coefficient of self-steepening for short pulses and v
is the higher-order dispersion coefficient. The parameter
M is the full nonlinearity parameter.

2. Succinct overview of trial equation
method

In this section we outline the main steps of the trial
equation method as following ([1], [4]):
Step-1: Suppose a nonlinear PDE with time-dependent
coefficients

P(u’ut’ux'utt'uxt’uxx""):0 (3)

can be converted to an ordinary differential equation
(ODE)

QU.U U U"...)=0 @

using a travelling wave hypothesis u(x,t) = U (&),
E=x-vt, where U=U(&)
function, Q is a polynomial in the variable U and its

derivatives. If all terms contain derivatives, then Eq.(4)
is integrated where integration constants are considered
Z€ros.

Step-2: Take the trial equation

(U')ZZF(U):ga,U' 5)

is an unknown

where &, (1=0,1,..,N) are constants to be
determined. Substituting Eq.(5) and other derivative
terms suchas U~ or U™ and so on into Eq.(4) yields a
polynomial G (U) of U . According to the balance
principle we can determine the value of N . Setting the
coefficients of G(U) to zero, we get a system of
algebraic equations. Solving this system, we can
determine V and values of @, @, ..., @y .

Step-3: Rewrite Eq.(5) by the integral form

i(é—é)#% ©®)

According to the complete discrimination system of
the polynomial, we classify the roots of F(U), and

solve the integral Eq.(6). Thus we obtain the exact
solutions to Eq.(3).

3. Soliton solutions

In order to solve Eq.(2) by the trial equation
method, we use the following wave transformation

q(x,t) =U(&)e' ™Y (7)

where U (&) represents the shape of the pulse, & = X — vt
and @ = -k X+wt+6. The function @(X,t) is the
phase component of the soliton, x is the soliton frequency,

while @ is the wave number, & is the phase constant and
V is the velocity of the soliton.

Substituting Eq.(7) into Eq.(2) and then decomposing
into real and imaginary parts yields a pair of relations ([2]).
The imaginary part gives

Vi2ax+a+{(2m+1)A+2mi U =0 (g
while the real part gives

au’ —(a)+aK+aK2)U -

9)
AxU ™ +b F(UZ)U =0
The imaginary part equation implies
V=-2ak—«a (10)
and
@2m+1)A+2myv =0 (12)

Eq.(10) gives the velocity of the soliton and Eq.(11) gives
the constraint relation between the two perturbation terms,
while Eq.(9) can be integrated to determine the soliton
profile. This form for the velocity remains the same for all

types of nonlinearity, F(S).

3.1. Kerr - law

The Kerr-law of nonlinearity originates from the fact
that a light wave in an optical fiber faces nonlinear responses
from nonharmonic motion of electrons bound in molecules,
caused by an external electric field. As a result the induced
polarization is not linear in the electric field, but involves
higher order terms in electric field amplitude. Even though
the nonlinear responses are extremely weak, their effects
appear in various ways over long distance propagation that is
measured in terms of light wavelength ([2]).

For Kerr-law nonlinearity
F(s)=s (12)

so that Eq.(2) reduces to

ig, +aq,, +blql g =

i[aqx+/1(|q|2mq)x+v(|q|2m)xq} (13)
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and Eq.(9) simplifies to

au’ —(a)+aK+aK2)U -

AkUP™ +pU° =0

(14)

Balancing U~ with U*™" in Eq.(14), then we get

N =2m+ 2. Using the solution procedure of the trial
equation method, we obtain the system of algebraic
equations as follows:

U 2™ Coeff.:
a(m+1)a,,., —Ax =0,
U® Coeff.:
2aa, +b =0,
U2 Coeff.:
aa, =0,
U™ Coeff.:
aa, —w-ax—ax’ =0,
U° Coeff.:
aa, =0.
Solving the above system leads to
a,=0, a, :M,%:O’
a
b Ak

a,=-——, a, , = ———
Yo2a ™ a(m+1)

and also apparent coefficients from Eq.(14)
a'5 = a‘6 == a'2m+l :O

where a,, @, @, k, a, b, A are arbitrary

constants.
Substituting these results into Egs.(5) and (6), we
get

i(f—fo) =
du (15)

J'\/a0+(aH—aK_{—aK2]U2 b U4+ Ax U2m+2

a " 2a a(m+1)

In order to carry out the integration of Eq.(15) it is necessary
to choose M=1. Thus, with m=1, new Eq.(15) is
following:

du (16)

£(e-&)=] 2
\/ao+[a)+mc+azc jU2+[/1K—bjU4

a 2a

Casel
If we set @, = 0 in Eq.(16) and integrating with respect

to U , we get the following exact solution of Eq.(13):

2(a)+0[K+aK2)
)=+
q(x ) \/ b-Ax

2
sech |: ’w (X —Vt)] ei(”(x”"ﬁg)’
a

q(x,t) _ i\/2(a)+0uc+ aK‘Z)
Ak —Db (18)

2
+ +a i(—rX+ot+
csch{,/—a) arTer (x—vt)}e'( wrerl),
a

where Eq.(17) and Eq.(18) represent bright and singular
soliton solutions respectively. These solitons are valid for

A7)

a(a)+alc+a1(2)> 0.

q(x’t)=i\/2(“’+ak+a;c2)

b-Ax

(19)
2
SEC|: _a)+a/c+a/c (X_Vt):|ei(xx+wt+9)’
\ a
2
q(X’t):i\/Z(a);aKJraK )
- Ak (20)

2
+ +a i(—cx+ot+
CSC|: /—M(X—Vt)}el( X t‘g)’
a

where EQ.(19) and Eq.(20) represent singular periodic
solutions. These solutions are valid for

a(a)+alc+a1<2)< 0.
Case 2

(a) +ak +ak? )2
2a (Ax—h)

integrating with resect to U , we get the following exact
solution of Eq.(13):

If we set g, = in Eqg.(16) and
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@+ ak +ax’
)=+, |
q(x ) Ax—Db

: @)
tan [ W+ oK +ax (X —Vt)} ei(—Kx+wt+t9)’
2a
w+ oK+ aK2
X\t)=x,|——
f ( ) \' Aix-b
(22)

2 .
C0t|: a)+6‘{;('+al(' (X—Vt):| el(*rcx+wt+9),
\ a

where Eq.(21) and Eq.(22) represent singular periodic
solutions. These solutions are valid for

a(a)+aK+aK2)> 0.

o+ ak + ak’
t) =2, [P
q(x ) b-Ax

2
tanh \/_a)"'azﬂ(x_vt) ei(—;cx+wt+9),
a

/a)+a/c+azc2
A==, /—
q(x ) b-IAx

2
coth |: _w (X _ Vt):l ei(7KX+{ot+9) ,

(23)

(24)
2a

where Eq.(23) and Eq.(24) represent dark and singular
soliton solutions respectively. These solitons are valid
for

a(a)+a/c+a/(2)< 0.

3.2. Power - law

The power-law nonlinearity is exhibited in various
materials including semiconductors. This law also
occurs in media for which higher-order photon processes
dominate at different intensities. Moreover, in nonlinear
plasmas, the power-law solves the problem of small- K
condensation in weak turbulence theory. This law is also
treated as a generalization to the Kerr-law nonlinearity
([2D).

For power-law nonlinearity
F(s)=s" (25)

so that Eq.(2) collapses to

ig, +aq,, + b|q|2”q = ilozqX + /1([q|2mq)x +v(jq|2m )XqJ (26)

The parameter N is in the range 0<N<2, and in

particular N 2 since this case leads to a self-focusing
singularity. In this case, Eq.(9) simplifies to

aU” —(o+ax+ax? U — AxU ™ +bU ™ = 0 (27)

To obtain an solution, we use the

transformation

analytic
1

U = V2" inEq.(27) to find
af(2-2n)(v ) 200" )~
N (28)
an*v? (a)+ar<+ aKZ)—4/1Kn2VT2 +4n°bV3 =0

m
" . —+2
Balancing VV  or (\/ )2 with V" in Eq.(28), then we

m : . .
get N =—+2. Using the solution procedure of the trial
n

equation method, we obtain the system of algebraic
equations as follows:

m

v ’ Coeff.:
—42xn° +a(l+m)a, =0,
V? Coeff.:
4n’b+a(l+n)a, =0,
V2 Coeff.:
—4n2(a)+aK+aK2)+ aa, =0,

V! Coeff.:

a(l-n)a, =0,
V? Coeff.:

a(l-2n)a, =0.

Solving the above system leads to

4n? (a)+a'1c+alc2)

a, = 0, a = 0, a, = ,
a
4n’pb _ 4Akn’

=, am =
a(l+n) -+ a(m+1)
and also apparent coefficients from Eq.(28)
a,=a;,=..=a, =0

m
—+1
n
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where @, a, k, @, b, A are arbitrary constants.

Substituting these results into Egs.(5) and (6), we
have

He-&)=
v

'[ 4n2(a)+alc+ak‘2) , At Adk T2
a a(l+n) 'a(m+1)

(29)

Casel
For m=n, Eq.(29) reduces to

dv (30)
4n2(a)+ ak +ax? )V 2, 4n2(/11( - b)v 3
a a(n+1)

t(e-&)=]
J

Integrating EQ.(30), we obtain the exact solutions of
Eq.(26) as follows:

bh-Ax
X,t)==%
a(x0) h\/nz(a)+alc+al(2)
sec
a

\/(n +1)(a)+aK+aK2)

(1)

(x-vt)

\/(n+1)(a)+ax+a7c2) "
Ax—b
x,t)==%
9(xt) \/nz(a)+a;<+az<2)
csch
a

(32)

(x—vt)

i(—xx+at+0)

e )

where Eq.(31) and Eq.(32) represent bright and singular
soliton solutions respectively. These solitons are valid
for

a(a)+a/c+a/c2)> 0.

Sl

\/(n-i-l)(a)—i-a/(—i-akz)
Ak =D

a(xt)=+ n’(w+ ax + ax?
se{\/— ( )(x—vt)]

(33)

a

ei(—;cx+wl+9),

\/(n+l)(a)+a1<+ al(‘z)
Ak —b
+

Jg)==x
a(x) nz(a)+aK+aK2) (34)
CSC| 4|— (x—vt)

a

ei(—r(x+(ut+9)

where EQ.(33) and Eq.(34) represent singular periodic
solutions. These solutions are valid for

a(a)+alc+a1(2)< 0.

Case 2
For m = 2n, Eq.(29) reduces to
He-&)=
J Y (35)
35
4 ( cotooc+ax’
( )V2 4n2b V3+ 4/7./(”2 V4
a all+n)  a@n+l)
Eq.(35) can be integrated with respect to V' if we set
, _ (2n+1p?
o+ak+tak” = ————
42xk(n+1)
Thus, we obtain exact solutions of Eq.(26):
1
(2n+1)b 2n
Mzc(n +1)
X, t)= 36
a(x1) n’(2n+1)b’ 58
1+tanh| |—————(x—vt)
4aik(n+1)
ei(—rcx+rut+€) ,
(2n+1)b n
4ik(n+1)
t)= @7
a(xt) n’(2n+1)b?
ltcoth| |[————(x—vt)
4aii(n+1)

i(—kx+at+6)

el ,

where EQ.(36) and Eq.(37) represent dark and singular
soliton solutions respectively. These solitons are valid for

aix > 0.
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3.3 Quadratic-Cubic Law

This nonlinearity first appeared in 2011 ([3]). The
general form can be written as

F(s) = b/s +b,s

where b, and b, are constants. The governing NLSE
therefore is:

iq, +ad, +(by o] +b,|a" )a =
i[aqx +/1(|q|zm q)X +v(|q|2m)X q}

In this case, Eq.(9) simplifies to

(38)

au” —(a)+0ﬁ(+aK2)J — U™ +bU % +b,U° =0(39)

Balancing U~ with U™ in Eq.(39), then we get

N =2m+ 2. Using the solution procedure of the trial
equation method, we obtain the system of algebraic
equations as follows:

U™ Coeff.:
a(m+1)a,,., —Ax =0,
U? Coeff.:
2aa, +b, =0,
U2 Coeff.:
3aa, _
5 +b, =0,
U' Coeff.:
aa, —w—-ak—axk’ =0,
U° Coeff.:

aa, =0.

Solving the above system leads to

w+ak +ax’ 2b,
=0, a,=— "% a=-"1
% 2 a 3a
a=_P __ Ak
4 1 ER2m+2
2a a(m+1)

and also apparent coefficients from Eq.(39)
a=a;=..=a,,, =0

where a,, @, a, k, a, b, b,, A are arbitrary
constants.

Substituting these results into Egs.(5) and (6), we get

HE-&)=

I U

\/aﬁ[ma’ﬁa"z]uz D by, A pme
a 2 2 ami)

(40)

In order to carry out the integration of Eq.(40) it is necessary
to choose M=1. Thus, with m=1, new Eq.(40) is
following:

i(f_go) =
J — du (a1
\/ao -{WJUZ _&Lﬁ _,_(Mju“
a 3a 2a
Casel
Eq.(41) can be integrated with respect to U if we
set
2
a,=0, o+ax+ax’ = _ Ay
9(Ax—h,)
Thus, we obtain exact solutions of Eq.(38):
__ b
Xt)=——
1) = 3 ey
b12
1+tanh| |————(x—vt) (42)
18a(Ax—h,)
i(—xx+ot+0)
__ b
Xt)= ————
DTy
blz
1+coth —(X—vt) (43)
18a(Ax—b,)
ei(—l(x+(ut+6‘),

where EQ.(42) and Eq.(43) represent dark and singular
soliton solution respectively. These solitons are valid for

a(Ax—h,)>0.
Case 2
Eq.(41) can be integrated with respect to U if we set
a,=0, b, =4«



Optical soliton perturbation with full nonlinearity in polarization preserving fibers using trial equation method 391

Thus, we obtain exact solutions of Eq.(38):

3(a)+ aK + aKZ)
B . 44
q (X, t) == bl - el(—xx+wt+,9), ( )
sechzl\/@(x—vt)}
3(0) + ok + aK? )
2, _ "
Q(X,t) =+ bl el(—;cx+wt+a) ( )

—_ 2 i
csch{/%(x—vt)}

where Eq.(44) and Eq.(45) represent bright and singular
soliton solutions respectively. These solitons are valid
for

a(a)+az<+az<2)> 0.

3((0+0!K‘+¢':1K2)
B . 46
q (X,t) == bl > el(_’(XM}HG)y ( )
secz{ _w(x_w)}
4a
3(w+ax+ax®)
_ Zbl
q(x,t)== 2 .
2 W+ oK +axK
osc?| |- (x—wt)
4a
ei(—r(x+a;t+6’) ,

where Eq.(46) and Eq.(47) represent singular periodic
solutions. These solutions are valid for

a(a)+a/c+a/c2)< 0.

3.4. Parabolic-Law

The collapse of two-and three-dimensional optical
beams in a Kerr-law medium was considered as a means
of producing high electric field strengths. It was
observed that the inclusion of a saturable nonlinearity
could halt the singular collapse, thus causing the
formation of an optical beam that propagates without
changing its temporal or spatial shape, being held
together by nonlinear effects. Therefore, it is of interest
to consider nonlinearities higher than the third-order to
obtain some knowledge of the diameter of the self-
trapped beam. There was little or no attention paid to the
propagation of optical beams in the fifth-order nonlinear
media, since no analytic solutions existed and it seemed
that the chances of finding any material with significant

fifth-order effects were low. However, recent new results
have reignited interest in this area ([2]).

For parabolic-law nonlinearity,
F(s) =b,s+b,s’ (48)

where b3 and b4 are constants. Therefore, Eq.(2) takes the
form

ig, +aq,, +(b3|q|2 +b, |q|4)q =

2m 2m (49)
i[aqx +/1(|q| q)x +v(|q| )X q}
In this case, Eq.(9) simplifies to
au’ —(a)+a/c+aK2)U -
(50)
AU +b U +bh,U° =0
1
By using transformation U =V 2 | Eq.(50) becomes
a(—(v‘ ) 2w )—4v2 (0+ax+ax?)-
(51)

A2V ™ +4(bV2 +bV*)=0

Balancing VV = or (\/)2 with V™2 in Eq.(51), then we

get N =m+2. Using the solution procedure of the trial
equation method, we obtain the system of algebraic
equations as follows:

V ™2 Coeff.:
-4k +a(m+1)a, ., =0,

V* Coeff.:

4b, +3aa, =0,
V? Coeff.:

4b, +2aa, = 0,
V? Coeff.:

- 4(a)+ oK+ aK2)+ aa, =0,

V° Coeff.:

aa, = 0.
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Solving the above system leads to

4(a)+0{K+aK2) 2b
:01 a, = y :__31
Y 2 a 8 a
A
Y 3a’ ™ a(m+l)

and also apparent coefficients from Eq.(51)

where &, @, o, k, a, by, b,, A are arbitrary
constants.

Substituting these results into Egs.(5) and (6), we

get
t(£-&)=
J dv
2
a1V+4(a)+aK+aK )Vz— (52)
27b3V3—47b4V4+ 4/1’( m+2
a 3a a(m+1)
Casel
For m =1, Eq.(52) reduces to
dv
+(¢-6)=] 63)
4(a)+0u(+a1(2) )
aVv + \Y
a
+2(1K—b3)vs_47b4v4
a 3a
Casel.1

Eq.(53) can be integrated with respect to V if we
set

3(Ax b, )

=0, w+akx+ax’ =—
2 16D,

Thus, we obtain exact solutions of Eq.(49):

3(Ax—by)
1t = -
a(xt) 8D,
1
2
1+tanh _S(ax=b,) (x—vt) (54)
16ab,
i(—xx+ot+0)

3(Ax—by)
)= ——
W)=,
: H
1+ coth —3<M__b3)(x—vt) (55)
16ab,

i(—KXHuHH)

where Eq.(54) and Eq.(55) represent dark and singular
soliton solution respectively. These solitons are valid for

ab, <0.
Case 1.2
Eq.(53) can be integrated with respect to V  if we set
a =0, b,=1x

Thus, we obtain exact solutions of Eq.(49):

\/3(w+a/<+azc2) 2

b4
q(x,t)==
( ) 4(a)+a/(+a1(2) (56)
sech (x—vt)
a
ei(—xx+wt+9) ,
1
3(a)+a/c+a/c2) 2
_ b
q(x.t)==* 57
( ) 4(a)+ak+aK2) 1)
csch (x—vt)
a
ei(—Kx+wt+9) ,

where Eq.(56) and Eq.(57) represent bright and singular
soliton solutions respectively. These solitons are valid for

a(a)+al<+a7<2)> 0.

q(x,t)=

+

i(—Kx+ot+6)

\/3(a)+al('+al('2) z

b4

sec \/—

4(a)+a/(+a/(2)

a

(x—vt)

(58)
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1

3(a)+a/c+a/c2) z
b4
g(x,t)==+ (59)
( ) \/4(a)+a/(+a/<2)
CsC| 4| — (x—vt)
a
ei(—rcx+wt+0) ,

where EQq.(58) and Eq.(59) represent singular periodic
solutions. These solutions are valid for

a(a)+a/c+a/(2)< 0.
Case 2
For m = 2, Eq.(52) reduces to

i(é:_go):
,[ dv

4(a)+mc+a/c2)

aV + vzi-  (60)
2—b3V3+4(/1K_b4)V4
a 3a

Case 2.1
Eq.(60) can be integrated with respect to V if we
set

32

=0, 2-_ 8
a o+ ak +aK 16(2x —b,)

Thus, we obtain exact solutions of Eq.(49):

3b
’t = 3
1) = 8 by
1
3b? ?
1t+tanh| |————(x—vt) (61)
16a(Ax—b,)
i(—KXHuHH)
3b
lt = 3
A0e) (A =D,
1
2 2
1+coth L(x—vt) (62)
16a(Ax—b,)

ei(—K)H—wHH)

where Eq.(61) and Eq.(62) represent dark and singular
soliton solution respectively. These solitons are valid for

a(Ax—D,)>0.

Case 2.2
Eq.(60) can be integrated with respect to V if we
set

a=0,b,=Ax

Thus, we obtain exact solutions of Eq.(49):

q(x,t) _ J_\/2((0+0{K+a1(2)

b,
- (63
sech (a)+0{I('+al(‘ )(X—Vt) ei(fxx+wt+6’)’
a
2
q(x,t):i\/—z(w+0;’(+a’( )
3

(64)

2
esch \/(a)+al;+ ax )(X—Vt) ei(*KXM)HH)’

where Eq.(63) and Eq.(64) represent bright and singular
soliton solutions respectively. These solitons are valid for

a(a)+a1<+a1c2)> 0.

Q(X,t):i\/—z(a)+aK+aK2)

b,
( 2) (65)
+ +a .
sec \/_ @+ oK K (X—Vt) el(—xx+wt+6‘),
a
NN e
’ (66)

2
csec \/_(a)-i-#a-i-al(‘)(x_w) ei(—xxmug),

where EQq.(65) and Eq.(66) represent singular periodic
solutions. These solutions are valid for

a(a)+a1<+a1<2)< 0.

3.5. Dual-Power Law

This model is used to describe the saturation of the
nonlinear refractive index. Also, this serves as a basic model
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to describe the solitons in photovoltaic-photorefractive
materials such as LiNbO3 ([2]).
For dual-power law nonlinearity,

F(s) = bs" +b,s*" (67)
where b, and by are constants. Therefore, Eq.(2)
reduces to

ig, +aq,, +(b5 |q|2n +b, |q|4”)q -
. 2m 2m (68)
I[aqx +2(|af" a) +v(|a Xq}
In this case, Eq.(9) simplifies to
au’ —(a)+aK+ aKZ)U —
(69)

ZKU 2m+1 + b5U 2n+1 + b6U 4n+1 = 0

1
By using transformation U =V 2" Eq.(69) becomes

a((2-2n)(v') +20w" )
4n2V2(a)+a/<+aK2)— (70)

43knV 1 4 4n? (B2 +bV*) =0

m
" \2 —+2
Balancing VV  or (V ) with V. " in Eq.(70), then
m
we get N =—+2. Using the solution procedure of
n

the trial equation method, we obtain the system of
algebraic equations as follows:

m

2
V" Coeff.
—4n’Ax +a(l+ma,, =0,

n

V* Coeff.:
4n’b, +a(l+2n)a, =0,
V? Coeff.:
4n’b, +a(l+n)a, =0,
V? Coeff.:
—4n2(a)+a1<+a7<2)+ aa, =0,
V' Coeff.:

a(l-n)a, =0,

VO Coeff.:

a(l-2n)a, =0.
Solving the above system leads to
4n? (a)+051<+ al('z)
a,=0, =0, a,= ,
a
___4n’b 4n*b, _ 4n’ik

a(l+n) ' a(l+2n)’ ™2 a(m+l)

and also apparent coefficients from Eq.(70)

where @, a, k, @, by, by, A are arbitrary constants.

Substituting these results into Egs.(5) and (6), we get

i(ég_éo) =
dv

= 2
l4n (a)+a/(+a/( )Vz— 4n’b, Vi_ ()
a a(l+n)
4n’b, Ve 4n’Ax |, 2
a(l+2n) a(m+1)

Case 1l

For m = n, Eq.(71) reduces to

H(¢-5)=
I dv
2 2
4n (a)+a/c+a1c )V2+ (72)
a
4n2(iK—b5)V3_ 4n’h, v
a(n+1) a(l+2n)

Casell

Eq.(72) can be integrated with respect to V  if we set
(Ax—by ) (1+2n)

ax’ =—
W+ oK+ aK 4(n+1)2b6

Thus, we obtain exact solutions of Eq.(68):
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1

(Ax—by)(1+2n) n
a(xt)= n?(Ax—by)’ (1+2n) (73)
1xtanh 4(n+1)" ab,
(x-w)
ei(—;cx+mt+.9) ;
(Ax—by)(1+2n) x
~ 4(n+Db,
q(x.t)= n? (Arc—by)’ (1+2n) (74)
1+coth 4(n+1)2 abe
(x=vt)
ei(—:cx+wt+49) ’

where Eq.(73) and Eq.(74) represent dark and singular
soliton solution respectively. These solitons are valid for

abs <0.
Case 1.2

Eq.(72) can be integrated with respect to V if we
set

b, = Ak

Thus, we obtain exact solutions of Eq.(68):

\/(Zn +1)(a)+mc+a/(2) o
b,
q(xt)=+ \/4n2(a)+a1(+alc2) (75)
sech a
(x-vt)
ei(—/cx+a)t+9) ’
1
(2n +l)(a)+a1<+a1<2) an
_ bs
g(xt)=1 \/4n2(a)+a/<+a/<2) (76)
csch a
(x=vt)

ei(—xx+wt+9) ’

where Eq.(75) and Eq.(76) represent bright and singular
soliton solutions respectively. These solitons are valid for

a(a)+a1<+a1<2)> 0.

(2n +1)(a)+m(+ a/cz)
b,
a(x,t)==+ (77)

4n?*(w+ ax +ax’®
sec \/— (a) ZK K)(x—vt)

i(—xx+at+0)

gl ,

\/(2n+1)(a)+a/c+alc2)
bs

t)== (78)

q(x ) \/ 4n2(a)+a/c+a/c2)

CSC| 4|—

a

(x—vt)

i(—xx+at+0)

i(

e )

where EQ.(77) and Eq.(78) represent singular periodic
solutions. These solutions are valid for

a(a)+a1<+a1<2)< 0.

Case 2
For m = 2n, Eq.(71) reduces to
£(¢-&)=
J- dv
2 2
4n (a)+a/(+alc )VZ— (79)
a
an*h, s .\ 4n? (/1K—b6)v4
a(l+n) a(l+2n)
Case2.1
Eq.(79) can be integrated with respect to V  if we set
,_ (2n+1)?
o+axk+ak® =

4(n+1) (Ax —Dy)

Thus, we obtain exact solutions of Eq.(68):
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(2n+1)b; 2n
4(n+1)(Ax—by)
a(xt)= n?(2n+1)b? (80)
1+tanh| \/4a(n+1)" (Ax —by)
(x—vt)
i(—f(x+wt+€),
1
(2n+1)b; 2n
4(n+1)(Ax—by)
q(x.t)= n?(2n+1)b? (81)
1+coth| \[4a(n+1)" (Ax —by)
(x—vt)
ei(—rcx+wt+€)

where Eq.(80) and Eq.(81) represent dark and singular
soliton solution respectively. These solitons are valid for

a(Ax —b,)>0.
Case 2.2

Eq.(79) can be integrated with respect to V if we
set
b, = Ak

Thus, we obtain exact solutions of Eq.(68):

1
(n+1)(a)+a/(+a/<2) "
b5
a(xt)==+ \/nz(a)+a1c+aic2) (82)
sech a
(x-vt)
ei(—xx+wt+9) ,
1
(n+l)(a)+a1(+a1(2) "
_ B
a(xt)==+ \/nz(a)+a1<+a/c2) (83)
csch a
(x—vt)
ei(—r«x+a)t+9) '

where Eq.(82) and Eq.(83) represent bright and singular
soliton solutions respectively. These solitons are valid for

a(a)+a1<+a1<2)> 0.

(n+1)(a)+0u(+a/c2) "
_ "
a(xt)=+ \/ N’ (o+ax+ax’) (84)
sec| \ a
(x—vt)
ei(—Kx+a;t+H) ’
1
(n+1)(a)+a/<+a1<2) "
b5
q(xt)== \/ n2(0)+al(+al(‘2) (85)
cscl '\ a
(x—vt)
ei(—lcx+a)t+9) ,

where EQ.(84) and Eq.(85) represent singular periodic
solutions. These solutions are valid for

a(a)+alc+alc2)< 0.

3.6. Log — Law

This log-law nonlinearity arises in various fields of
contemporary physics. It allows closed form exact
expressions for stationary Gaussian beams (Gaussons) as
well as for periodic and quasiperiodic regimes of the beam
evolution. The advantage of this model is that the radiation
from the periodic soliton is absent as the linearized problem
has a discrete spectrum only ([2]).

For case of log-law nonlinearity,

F(s)=Ins (86)
so that Eq.(2) collapses to
ig, +aq,, +bln (|q|2)q =

i[ozqx +/1(IQI2m Q)X +V(|q|2m)x q}

In this case, Eq.(9) simplifies to

(87)
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au’ —(a)+aK+aK2)U -

AxU?™ 120U InU =0

(88)

To obtain an analytic solution, we use the transformation
U =¢" inEq.(88) to find

a((V')Z +V")—a)—m<— (69)

ax’ — Axke®™ +2bV =0

In order to carry out the balancing procedure in Eq.(89),
it is helpful to set A =0. This indicates that the
perturbed NLSE with log-law nonlinearity can be
integrated only when the self- steepening term is not
present. In this case the perturbed NLSE is given by

i, +aq,, +2bInjglg = ilaqx +v(]q|2m)qu (90)

and Eq.(89) reduces to
a((\/ )2 +V' )— w—ak—ax?+2bV =0 (91)

Balancing (V')2 with V in Eq.(91), then we get

N =1. Using the solution procedure of the trial
equation method, we obtain the system of algebraic
equations as follows:

V! Coeff.:
aa, +2b=0,

V° Coeff.:
aa,

7+aa0—a)—a/<—a1<2 =0.

Solving the above system leads to

_b+w+ax+ax?

0

_—2b
a ' a
where @, a, k, &, b are arbitrary constants.

Substituting these results into Egs.(5) and (6), we
get

dv

b+w+akx +ax? —Z—bV
a a

(92)

£(E-&)=]
|

Integrating EQ.(92), we obtain the exact Gausson
solutions of Eq.(90) as

q(x, t) - Ae—BZ(x—vt)Zei(—metH?) (93)

where the amplitude A and the inverse width B are

(b+a)+alc+alc2J
A=exp (94)

2b

/b
B=.— 95
2a ®9)

Naturally, the width of the Gausson proposes the restriction

and

ab>0.

This shows that the nonlinearity and GVD must bear the
same sign for the existence of Gaussons.

3.7. Anti-Cubic Law
This anti-cubic (AC) law first appeared during 2003

([8], [9], [11], [14]). Later, a lot of developments were made
and results were reported. In this case,

F(s) = b—;+bgs+bgs2
s

where b,, by and by are all constants. Therefore NLSE
with AC nonlinearity is given by

iq, +aq,, +(b7 lo| * +h,|af* +b, |q|4)q =

. 2m 2m (96)
|[ocqX +l(|q| q)X +v(|q| )X q}.
In this case, Eq.(9) simplifies to
au’ —(a)+aK+ aKZ)U — AU 4
(97)
bU=+bU°®+bU°=0
1
By using transformation U =V 2 | Eq.(97) becomes
a(—(v' ) 2w )—4v2 (0+ax+ax?)-
(98)

A7V ™ +4(b, +bV +bV*) =0

Balancing VV = or (\/)2 with V™2 in Eq.(98), then we

get N =m+2. Using the solution procedure of the trial
equation method, we obtain the system of algebraic
equations as follows:
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V ™2 Coeff.:
-4k +a(m+1)a,., =0,
V* Coeff.:
4b, +3aa, =0,
V? Coeff.:
4h, +2aa, = 0,
V? Coeff.:

—4(a)+ aK + aK2)+ aa, =0,
VO Coeff.:
—aa, +4b, =0.

Solving the above system leads to

ab 4(a)+al(+alc2>
a, :_7’ a, = ,
a a
_2b _ 4D, _ 4k
BT AT A, T
a 3a a(m+1)

and also apparent coefficients from Eq.(98)

where 8, @, a, k, a, b,, by, by, A are arbitrary
constants.

Substituting these results into Egs.(5) and (6), we
get

t(§-&)=
I dv
Ao+ ax +ax’
4—b7+a1V+ ( )Vz_ (99)
a a
Byyo e, Gk
a 3a a(m+1)

To carry out the integration of EQ.(99) requires that
m =1. Thus, with m =1, new Eq.(99) is following:

i(é:_go):
,[ dv

4ab7+alv . 4(a)+alc+a1<2)

y24s  (100)

a

2(/1K—b8)v3_47bgv4
a 3a

Eq.(100) can be integrated with respect to V if we set

2
3(a)+ oK+ aK'Z)

=0,b, = Ax,b, =—
aQ s K, 0, 4b,

Thus, we obtain exact solutions of Eq.(96):

\/_3(0)+a1(+a/<2) ?

2D,
g(x,t)=+ 2(0)+a1c+a1<2) (101)
tan a
(x—vt)
i(—rx+ot+0)
| 1
3((0+a1c+arc2) 2
- 2b,
a(xt)=+ 2(w+a1<+a/(2) (102)
cot a
(x—vt)

ei(—/cx+(ut+49) ’

where Eq.(101) and Eq.(102) represent singular periodic
solutions. These solutions are valid for

a(a)+alc+alc2)> 0.

\/3(a)+a1(+a/c2) 2

20,

q(X,t)=i 2(a)+0ﬂc+aK2)
tanh|\ a

(103)

(x-w)

i(—xX+ot+6)

€ ,

3(a)+ oK+ aK'Z)
2b,

_2(w+a1<+ aKZ) (104)

coth a
(x—vt)

el(—/(x+(ut+9) ,
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where Eq.(103) and Eq.(104) represent dark and singular
soliton solution respectively. These solitons are valid for

a(a)+mc+a/<2)< 0.

3.8. Cubic-Quintic-Septic Law
This is an extension of parabolic law nonlinearity

([51, [6], [17]). This type of nonlinear optical medium
takes the form

F(s)=Dbys+ bllsz + blzs3

where b, b, and by, are all constants. Therefore
NLSE is given by

i, +ad,, +(b10 |Q|2 "'b11|q|4 +b, |Q|6)q =

. 2m 2m (105)
I[aqx +/1(|q| q)x +v(|q| )x q}
In this case, Eq.(9) simplifies to
au’ —(a)+0{K‘+aK2)U — AU 4
(106)

boU? +b,U° +B,U7 =0
1
By using transformation U =V 2 | Eq.(106) becomes

a(—(v‘ ) 2w )—4v2 (0+ax+ax?)-
(107)
ARV ™2 + AN + 4BV +4bV5 =0

Balancing VV ~ or (\/)2 with V™% in Eq.(107), then

we get N = m+ 2. Using the solution procedure of the
trial equation method, we obtain the system of algebraic
equations as follows:

V ™2 Coeff.:
-4k +a(m+1)a, ., =0,
V' Coeff.:
b, +aa; =0,

V* Coeff.:

4b, +3aa, =0,
V3 Coeff.:

2b, +aa, =0,
V 2 Coeff.:

—4(a)+alc+a1<2)+ aa, =0,
VO Coeff.:

—aa, =0.

Solving the above system leads to

4(a)+a1(+a1(2) 2b,

=0, a, = , :__0,
8 2 a S a
O T . L S
3a a a(m+1)

and also apparent coefficients from Eq.(107)

3, =a,=..=a

G

where &, @, a, k, &, b, b, b,, A4 are arbitrary
constants.

we get
i(ég_égo):
J- dv
4w+ ax +ax’ 108
av+ ( )VZ—ZZH’VS— (108)
4;b11v4_hv5+ 42’( Vm+2
3a a a(m+1)

To carry out the integration of EQ.(108) requires that
m = 3. Thus, with m = 3, new Eq.(108) is following:

i(f_go) =

J- dv
A Aw+ax+ aucz)v2 B 2210\/3 _(109)
4bnv4+(i’f_b12)vs
3a a

Eq.(109) can be integrated with respect to V if we set

30,

16(a)+ aK + a/cz)

a =0,b, =1x,b, =—

Thus, we obtain exact solutions of Eq.(105):

q(x,t)=\/2(w+m{+a’(2)

Byo

N

(a)+a1(+alc2)

(110)

1+tanh (x—vt)

a

ei(—z«x+a)t+€) ’
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)_ 2(a)+aK+aK2)

q(x,t)=
( by
1
2 2
(0)+aK+aK )
1+ coth \/ " (x—vt) (111)

i(—xx+ot+0)
1

where Eq.(110) and Eq.(111) represent dark and singular
soliton solution respectively. These solitons are valid for

a(a)+mc+a/c2)> 0.

3.9. Triple-Power Law
This is a generalization of cubic-quintic-septic law

nonlinearity and an extension of dual-power law
nonlinearity ([5], [6], [17]). In this case,

F(s) =b,s" +b, s +b,s™
where b;, b, and b, are all constants. Therefore
NLSE is given by

i, + a0l +(bya ol + by ol +bi o[ ) =
i[aqx +/1(|q|2rn q)X +v(|q|2m)X q}

In this case, Eq.(9) simplifies to

(112)

au’ —(a)+a/c+a/c2)U — AU 4

bl3U 2n+1 + b14U 4n+1 + blSU 6n+1 - O

(113)

1
By using transformation U =V 2" | Eq.(113) becomes

a((l—Zn)(V' )2 +2nWW' )—4n2\/2 (a)+ aK+ azcz)— (114)

ARV +4n%, V2 +4n%,V 4 +4nthVE = 0
. " R m+2 -
Balancing VV  or (V ) with V in Eq.(114), then

m . .
we get N =—+2. Using the solution procedure of
n

the trial equation method, we obtain the system of
algebraic equations as follows:

V ™2 Coeff.:

—4n’Ax +a(m+1)a,, =0

V° Coeff.:
4n’b, +a(l+3n)a, =0,
V* Coeff.:
4n%p,, +a(1+2n)a, =0,
V2 Coeff.:
4n?b, +a(l+n)a, =0,
V? Coeff.:
—4n2(a)+alc+ aK2)+ aa, =0,
V! Coeff.:
a(l-n)a, =0,
VO Coeff.:
a(l-2n)a, = 0.

Solving the above system leads to

4n’ (a)+a1c+ a/cz)
a,=0,a=0, a,= 3 ,
__4n’b, 4n’b,
= ——’a4 = =
a(l+n) a(l+ 2n)
4n’b, _ 4n* ik

" a(1+3n)) Mz oa(m+l)
and also apparent coefficients from Eq.(114)

=a, =0

a. =a, =...
6 7 m
n

where @, a, k, a, b,, b,, b, A are arbitrary
constants.

we get
i(i—fo) =
dv

]
’4n2 (a)+a/(+ a/c2>v - an’hy, .,

(115)

a a(l+n)
4n’b, Ve 4n’p, N 4n’Ax T
a(1+2n) a(1+3n) a(m+1)

To carry out the integration of Eq.(115) requires that
m =3n. Thus, with m = 3n, new Eq.(115) is following:
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i(§_§0)=
J‘ dv
’4n (a)+a/c+a1c )Vz— 4n’b, Vi (116)
a a(l+n)
4n’p,, V4+4n2(;u<—b15)vs
a(1+2n) a(1+3n)

Eq.(116) can be integrated with respect to V if we set

(L+2n)p3
= Ak, =— 117
Do = Ak e 4(1+n)2(a)+0{K+aK2) -

Thus, we obtain exact solutions of Eq.(112
1

(1+n)(a)+a/(+a1(2) 2n

by

q(xt)= nz(a)+mc+alc2)
1+tanh a

(118)

(x=vt)

i(—xx+ot+6)
L

(1+ n)(a)+aK+aK2) 2n

by

q(xt)= nz(a)+alc+alc2) (119)
1+coth a

(x-wt)

i(—xx+at+6)

e )

where Eq.(118) and Eq.(119) represent dark and singular
soliton respectively and they are valid for

alw+ax +ax?)>0. (120)

4. Conclusions

In this paper, optical solitons are studied in the
presence of perturbed nonlinear Schrédinger’s equation
with nine types of nonlinear fibers which are Kerr,
power, quadratic-cubic, parabolic, dual-power, log, anti-
cubic, cubic-quintic-septic and triple-power law
nonlinearity. Bright, dark and singular solitons are
yielded by the trial equation method along with
necessary constraint conditions that guaranteed the
existence of such solitons. On the flip side, singular
periodic solutions emerged with reverse form of the
constraints.
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